
19 Lecture 19: March 12

Last time

• Dummy-Variable regression

• Interaction

Today

• Midterm exam starts next Friday

• Unusual and influential data

Unusual and influential data

Linear models make strong assumptions about the structure of data, assumptions that often
do not hold in applications. The method of least squares can be very sensitive to the structure
of the data and may be markedly influenced by one or a few unusual observations.

Outliers

In simple regression analysis, an outlier is an observation whose response-variable value is
conditionally unusual given the value of the explanatory variable: see Figure 19.1.

Figure 19.1: The black point is a regression outlier because it combines a relatively large
value of Y with a relatively small value of X, even though neither its X-value nor its Y -value
is unusual individually. Because of the positive relationship between Y and X, points with
small X-values also tend to have small Y -values, and thus the black point is far from other
points with similar X-values. JF Figure 11.1.

Unusual data are problematic in linear models fit by least squares because they can unduly
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influence the results of the analysis. Their presence may be a signal that the model fails to
capture important characteristics of the data.

Figure 19.2 illustrates some distinctions for the simple-regression model Y “ β0 ` β1X ` ϵ.

Figure 19.2: Leverage and influence in simple regression. In each graph, the solid line
gives the least-squares regression for all the data, while the broken line gives the least-
squares regression with the unusual data point (the black circle) omitted. (a) An outlier
near the mean of X has low leverage and little influence on the regression coefficients.
(b) An outlier far from the mean of X has high leverage and substantial influence on the
regression coefficients. (c) A high-leverage observation in line with the rest of the data does
not influence the regression coefficients. In panel (c), the two regression lines are separated
slightly for visual effect but are, in fact, coincident JF Figure 11.2.

Some qualitative distinctions between outliers and high leverage observations:

• An outlier is a data point whose response Y does not follow the general trend of the
rest of the data.
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• A data point has high leverage if it has “extreme” predictor X values:

– With a single predictor, an extreme X value is simply one that is particularly
high or low.

– With multiple predictors, extreme X values may be particularly high or low for
one or more predictors, or may be “unusual” combinations of predictor values.

And the influence of a data point is the combination of leverage and discrepancy (“outlying-
ness”) through the following heuristic formula:

Influence on coefficients “ Leverage ˆ Discrepancy.

Assessing leverage: hat-values

The hat-value hi is a common measure of leverage in regression. They are named because it
is possible to express the fitted values Ŷj (“Y-hat”) in terms of the observed values Yi:

Ŷj “ h1jY1 ` h2jY2 ` ¨ ¨ ¨ ` hjjYj ` ¨ ¨ ¨ ` hnjYn “

n
ÿ

i“1

hijYi.

The weight hij captures the contribution of observation Yi to the fitted value Ŷj: If hij is
large, then the ith observation can have a considerable impact on the jth fitted value. With
the least square solutions, for the fitted values:

Ŷ “ Xβ “ XpXTXq
´1XTY

we (already) get the hat matrix:

H “ XpXTXq
´1XT

Properties:

• (idempotent) H “ HH

• hi ” hii “
řn

j“1 h
2
ij

• 1
n

ď hi ď 1 (a proof by Mohammad Mohammadi)

• h̄ “ pp ` 1q{n

In the case of SLR, the hat-values are:

hi “
1

n
`

pXi ´ X̄q2
řn

j“1pXj ´ X̄q2
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Detecting outliers: studentized residuals

The variance of the residuals (ϵ̂i “ Yi ´ Ŷi) do not have equal variances (even if the errors ϵi
have equal variances):

Varpϵ̂q “ VarpY ´ Xβ̂q “ VarrpI ´ HqYs “ pI ´ HqVarpYqpI ´ Hq “ σ2
pI ´ Hq

so that for ϵ̂i,
Varpϵ̂iq “ σ2

p1 ´ hiq.

High-leverage observations tend to have small residuals (in other words, these observations
can pull the regression surface toward them).

The standardized residual (sometimes called internally studentized residual)

ϵ̂
1

i ”
ϵ̂i

σ̂
?
1 ´ hi

,

however, does not follow a t-distribution, because the numerator and denominator are not
independent.

Suppose, we refit the model deleting the ith observation, obtaining an estimate σ̂p´iq of σ
that is based on the remaining n´1 observations. Then the studentized residual (sometimes
called externally studentized residual )

ϵ̂˚
i ”

ϵ̂i

σ̂p´iq

?
1 ´ hi

has an independent numerator and denominator and follows a t-distribution with n ´ p ´ 2
degrees of freedom.

The studentized and the standardized residuals have the following relationship (Beckman
and Trussell, 1974):

ϵ̂˚
i “ ϵ̂1

i

d

n ´ p ´ 2

n ´ p ´ 1 ´ ϵ̂12
i

For large n,

ϵ̂˚
i « ϵ̂1

i «
ϵ̂

σ̂

Test for outlier

It is of our interest to pick the studentized residual ϵ̂˚
max with the largest absolute value

among ϵ̂˚
1 , ϵ̂

˚
2 , . . . , ϵ̂

˚
n to test for outlier. However, by doing so, we are effectively picking the

biggest of n test statistics such that it is not legitimate simply to use tn´p´2 to find a p-value.
We need a correction on the p-value because of multiple-comparisons.

Suppose that we have p1 “ Prptn´p´2 ą |ϵ̂˚
max|q, the p-value before correction. Then the

Bonferroni adjusted p-value is p “ np1.
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Measuring influence

Influence on the regression coefficients combines leverage and discrepancy. The most di-
rect measure of influence simply expresses the impact on each coefficient of deleting each
observation in turn:

Dij “ β̂j ´ β̃jp´iq for i “ 1, . . . , n and j “ 0, 1, . . . , p

where β̂j are the least-squares coefficients calculated for all the data, and the β̃jp´iq are the
least-squares coefficients calculated with the ith observation omitted. To assist in interpre-
tation, it is useful to scale the Dij by (deleted) coefficient standard errors:

D˚
ij “

Dij

SE
Ź

p´iqpβ̃jp´iqq

Following Belsley, Kuh, and Welsh (1980), the Dij are often termed DFBETAij, and D˚
ij are

called DFBETASij. One problem associated with using Dij or D˚
ij is their large number:

npp ` 1q of each.

Cook’s distance is another popular measure, calculated as

Di “

řn
j“1pỹjp´iq ´ ŷjq

2

pp ` 1qσ̂2
“

ϵ̂
12
i

p ` 1
ˆ

hi

1 ´ hi

In effect, the first term in the formula for Cook’s D is a measure of discrepancy, and the
second is a measure of leverage. We look for values of Di that stand out from the rest.

A similar measure suggested by Belsley et al. (1980)

DFFITSi “ ϵ̂˚
i

hi

1 ´ hi

Except for unusual data configurations, Cook’s Di « DFFITS2
i {pp ` 1q.

Numerical cutoffs (suggested)

Diagnostic statistic Cutoff value

hi 2h̄ “
2pp`1q

n
, (3h̄ for small sample)

D˚
ij |D˚

ij| ą 1 or 2 (2{
?
n for large samples)

Cook’s Di Di ą 4
n´p´1

DFFITS |DFFITSi| ą 2
b

p`1
n´p´1
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