
Math 6040/7260 Linear Models
Mon/Wed/Fri 1:00pm - 1:50pm

Instructor: Dr. Xiang Ji, xji4@tulane.edu

1 Lecture 1:Jan 13

Today

• Introduction

• Introduce yourself

• Course logistics

What is this course about?

The term “linear models” describes a wide class of methods for the statistical analysis of
multivariate data. The underlying theory is grounded in linear algebra and multivariate
statistics, but applications range from biological research to public policy. The objective of
this course is to provide a solid introduction to both the theory and practice of linear models,
combining mathematical concepts with realistic examples.

Prerequisite

• Must: Introduction to Probability (Math 3070/6070), Mathematical Statistics (Math
3080/6080)

• Good to have: Scientific Computation II

A hierarchy of linear models

• The linear mean model:
y

nˆ1
“ X

nˆp
β
pˆ1

` ϵ
nˆ1

where E pϵq “ 0. Only assumption is that errors have mean 0.

• Gauss-Markov model:
y “ Xβ ` ϵ

where E pϵq “ 0 and Var pϵq “ σ2I. Uncorrelated errors with constant variance.

• Aitken model or general linear model:

y “ Xβ ` ϵ

where E pϵq “ 0 and Var pϵq “ σ2V. V is fixed and known.
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• Variance components models: y „ NpXβ, σ2
1V1`σ2

2V2`¨ ¨ ¨`σ2
rVrq withV1,V2, . . . ,Vr

known.

• General mixed linear Model:
y “ Xβ ` ϵ

where E pϵq “ 0 and Var pϵq “ Σpθq.

• Generalized linear models (GLMs). Logistic regression, probit regression, log-linear
model (Poisson regression), ... Note the difference from the general linear model.
GLMs are generalization of the concept of linear models. They are covered in Math
7360 - Data Analysis class (https://tulane-math-7360-2023.github.io/).

Syllabus

Check course website frequently for updates and announcements.

https://tulane-math-7260-2025.github.io/

HW submission

Through Github with demo on Friday class.

Presentations

Let me know your pick by the end of Friday (01/17/2025).

Spring 2023 comments

1. Experience in this course

• I enjoyed this class a lot. I enjoyed that the class only had a few students, which
made it feel like a community.

• It was a bit hard to follow towards the end of the semester. I think we spent too
much time on easier topics at the beginning of the semester but relatively less
time on harder topics towards the end

• The course was interesting, and the professor did a good job of thoroughly teaching
the topics discussed.

2. Strong aspects of this course

• Having the lectures based off of lecture notes was very nice because I could just
listen to Dr. Ji and didn’t need to worry about copying down a ton of material,
which helped me learn better

• I really enjoyed the setup of the course: prewritten notes for lectures, lab ses-
sions for application and learning computing, presentations to learn fun material,
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homework graded for completeness, take home exams. I feel like this setup helped
me enjoy and learn the material without feeling stressed.

• The expectations were clearly presented, and the exams fairly reflected the mate-
rials we discussed in class. The content was also discussed thoroughly.

Spring 2022 comments

1. Experience in this course

• I really enjoyed this class.

• The lecture is dry. Expect Dr. Ji to read through the lecture notes until some-
one asks a question. Also, having a background in statistics gives context to the
lecture notes.
Response: I did emphasize on pre-requisite last year, but it still seemed not
enough.

• I think this course was well laid out. Even though I did take it as a graduation
requirement, I ended up enjoying the course. I also think the work load in man-
ageable and professor Xi does provide all the tools necessary to succeed in the
course. It can be overwhelming at first but with a little time and effort you can
get the hang of the material.
Response: Mind the typos, students.

2. Strong aspects of this course

• Professor Ji is a great professor.

• Dr. Ji provides an inhuman amount of course material to help supplement learn-
ing, it was extremely helpful to have labs (answered and unanswered) as well as
homework keys posted.
Response: There will be labs again.

• Notes are very structured and the professor is nice.

• The strongest aspect of this course is the homework. They are a great way to
interact with and learn the material. The problems can seem challenging, but are
doable with a little effort. Also, he publishes the keys afterword so you can check
your work and see what the reasoning behind the answer is. This coupled with
the lab sessions are a great way to prepare for the exams.

3. There will be an internal mid-term-ish evaluation for this course. Will remember to
go over them.

Spring 2021 comments

1. Experience in this course
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• Overall, I had a pretty good experience in this course. It moved quickly, but that
is expected from this level of course. Sometimes it was hard to stay engaged with
the lectures and to really absorb the course material. Because the lectures moved
so fast, I really appreciated how Professor made the full notes available at the
time of the lecture. I would have liked if there were a few more examples with
the notes, as sometimes the homework felt disjoint from the notes.
Response: I will try to move slower this semester. I will start lab sessions earlier
too.

• The professor is an extremely intelligent, kind, and understanding professor. He
prioritizes in making sure that we understand the material and seeing how the
material can be applied. His lecture notes were a godsend because the texts could
be a bit ambiguous at times but he elucidated the material in such a comprehen-
sible manner.
Response: I will try to fix the left-over typos.

• Mentioned in class from other students/internal evaluation, conveying the math-
ematical concepts through the presentation is not a good idea to follow the class
in real-time. Prepared presentation can give rise to a distraction on what we have
been going over.
Response: I am still delivering this class in hybrid-mode. I found the presen-
tations fit online teaching better. I think the difficulty might be caused by (1)
fast moving lecture (2) I only realized the need of reviewing basic concepts of
probability almost a quarter into the semester...

• I found the setup of the course not very engaging. Additionally, many of the class
notes came directly from the additional sources with no additional information or
explanation, which I found to be not very helpful.
Response: I actually like them. I was the guinea pig to test them.

• Easily help us to understand the main course, and the notes and details are great.
Response: There will be notes.

• Moves very quickly and can be hard to keep up with. Sometimes instructions are
unclear.
Response: I will try to slow down.

• Both the instructor and the TA were helpful. It was hard to follow along in class
though.
Response: We don’t have TA this time. Make use of the office hour. And I have
to say, it needs effort to ace in this class.

2. Strong aspects of this course

• Having the lecture notes and labs available was very helpful. Professor was also
always very nice and accommodating, and willing to meet with me when I needed
help. He also always responded to student feedback, if we asked for an extra day
or two on the homework or something like that.
Response: Here is an example of correctly using the office hours.
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• His lecture notes and the lab sessions.
Response: They will be there again.

• Lab session is necessarily required to this class. A lot of computations in the class
would be done by computer due to the complexity, and students are expected to
handle with the computer programming properly at a desired level. The course
can be an introduction to the statistical computation, which does not exist in the
mathematics department.
Response: Hmm, there is a course Math 7360 Data Analysis that focuses more on
the computational side.

• I appreciated the homework reviews in class and felt these helped clarify the
material.
Response: Of course, the reviews will be there again. The purpose of the course
is for you to learn.

• Grading was easy which made up for the rigor.
Response: Don’t rely on this...

• Really appreciate that Professor Xiang made such a neat and tidy notes for us.
It is really helpful for me to review. And notes have a great interaction with
us, Professor Xiang also leaves some questions to help us think about the logic
behind.
Response: Well, Xiang is my first name. Please call me Prof. X.

• Prof. Xiang was highly organized and wanted his students to understand the
course content more than he made them worry about grades. I learned a lot
about Linear Models and feel confident applying the course content professionally
and academically. I wish most of the Math department had his teaching style
and implemented his course documents and organization structure. Prof. Xiang
made the course content in class digestible and if I needed to review the material
I could easily find it through his course notes and textbook. I wish I could say
the same about my other courses.
Response: Hmm, I like Prof. X. better.

• I really appreciated the emphasis on learning. It allowed for most students to
take it at the pace that was good for them.
Response: Please don’t let your score rely on this comment.

3. There will be an internal mid-term-ish evaluation for this course. Will remember to
go over them.

Rate my professor comments

N.A.
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2 Lecture 2:Jan 15

Last time

• Introduction

• Course logistics

Today

• Reply to the “Presentation Dates” thread on Canvas by the end of Friday.

• Git

What is git?

Git is currently the most popular system for version control according to Google Trend.
Git was initially designed and developed by Linus Torvalds in 2005 for Linux kernel devel-
opment. Git is the British English slang for unpleasant person.

Why using git?

• GitHub is becoming a de facto central repository for open source development.

• Advertise yourself through GitHub (e.g., host a free personal webpage on GitHub,
example and tutorial).

• a skill that employers look for (according to this AmStat article).

Git workflow

Figure 2.1 shows its basic workflow.

What do I need to use Git?

• A Git server enabling multi-person collaboration through a centralized repository.

• A Git client on your own machine.

– Linux: Git client program is shipped with many Linux distributions, e.g., Ubuntu
and CentOS. If not, install using a package manager, e.g., yum install git on
CentOS.

– Mac: follow instructions at https://www.atlassian.com/git/tutorials/install-git.

– Windows: Git for Windows at https://gitforwindows.org (Graphical User Inter-
face, or in short, GUI) aka Git Bash.

• Do not totally rely on GUI or IDE (Integrated Development Environment). Learn to
use Git on command line, which is needed for cluster and cloud computing.
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Figure 2.1

Git survival commands

• git pull synchronize local Git directory with remote repository.

• Modify files in local working directory.

• git add FILES add snapshots to staging area

• git commit -m “message” store snapshots permanently to (local) Git repository

• git push push commits to remote repository.

Git basic usage

Working with your local copy.

• git pull : update local Git repository with remote repository (fetch + merge).

• git log FILENAME : display the current status of working directory.

• git diff : show differences (by default difference from the most recent commit).

• git add file1 file2 ... : add file(s) to the staging area.
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• git commit : commit changes in staging area to Git directory.

• git push : publish commits in local Git repository to remote repository.

• git reset –soft HEAD 1 : undo the last commit.

• git checkout FILENAME : go back to the last commit, discarding all changes made.

• git rm FILENAME : remove files from git control.

Git demonstration

Show how to create a private git repository for HW and Exam submissions.

On GitHub

• Obtain student developer pack.

• Create a private repository Xiang-Ji-math-6040-2025-spring (please substitute 6040
by 7260 if you are taking the graduate level and use your own first and last names).
Add xji3 as your collaborators with write permission (instruction).

On your local machine:

• clone the repository: please refer to this webpage with instructions for your operating
system.

• enter the folder: cd Xiang-Ji-math-6040-2025-spring .

• after finishing the rest of the questions, save your file inside your git repository folder
Xiang-Ji-math-6040-2025-spring with name hw1.pdf (for example). Please make it
human-readable.

• now using git commands to stage this change: git add hw1.pdf

• commit: git commit -m “hw1 submission” (remember to replace the quotation mark)

• push to remote server: git push

• tag version hw1: git tag hw1 and push: git push --tags .

Take a look at the tags on GitHub (instructions).

When submitting your hw, please email your instructor (xji4@tulane.edu) a link to your tag
(instructions).
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3 Lecture 3:Jan 17

Last time

• Git

Today

• HW1 posted

• Linear algebra: vector and vector space, rank of a matrix

• Column space and Nullspace (JM Appendix A)

Notations

y
nˆ1

“ X
nˆp

β
pˆ1

` ϵ
nˆ1

¨

˚

˚

˚

˝

y1
y2
...
yn

˛

‹

‹

‹

‚

“

¨

˚

˚

˚

˝

x11 x12 . . . x1p

x21 x22 . . . x2p
...

...
...

xn1 xn2 . . . xnp

˛

‹

‹

‹

‚

¨

˚

˚

˚

˝

β1

β2
...
βp

˛

‹

‹

‹

‚

`

¨

˚

˚

˚

˝

ϵ1
ϵ2
...
ϵn

˛

‹

‹

‹

‚

• All vectors are column vector

• Write dimensions underneath as in X
nˆp

or as X P Rnˆp

• Bold upper-case letters for Matrices. Bold lower-case letters for Vectors.

Vector and vector space

(from JM Appendix A)

• A set of vectors x1, . . . ,xn are linearly dependent if there exist coefficients cj for j “

1, 2, . . . , n such that
řn

j“1 cjxj “ 0 and ||c||2 “

b

řn
j“1 c

2
j ą 0. They are linearly

independent if
řn

j“1 cjxj “ 0 implies ( ùñ ) cj “ 0 for all j.

• Two vectors are orthogonal to each other, written xKy, if their inner product is 0, that
is xTy “ yTx “

ř

j

xjyj “ 0.

• A set of vectors xp1q,xp2q, . . . ,xpnq are mutually orthogonal iff ( ðñ ) xpiqTxpjq “ 0 for
@i ‰ j.

• The most common set of vectors that are mutually orthogonal are the elementary
vectors ep1q, ep2q, . . . , epnq, which are all zero, except for one element equal to 1, so that
e

piq
i “ 1 and e

piq
j “ 0, @j ‰ i.
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• A vector space S is a set of vectors that are closed under addition and scalar multipli-
cation, that is

– if xp1q and xp2q are in S, then c1x
p1q ` c2x

p2q is in S.

• A vector space S is generated or spanned by a set of vectors xp1q,xp2q, . . . ,xpnq, written as
S “ spantxp1q,xp2q, . . . ,xpnqu, if any vector x in the vector space is a linear combination
of xi, i “ 1, 2, . . . , n.

• A set of linearly independent vectors that generate or span a space S is called a basis
of S.

Example A.1

Let

xp1q
“

»

—

—

–

1
1
1
1

fi

ffi

ffi

fl

,xp2q
“

»

—

—

–

1
2
3
4

fi

ffi

ffi

fl

, and xp3q
“

»

—

—

–

´3
´1
1
3

fi

ffi

ffi

fl

.

Then xp1q and xp2q are linearly independent, but xp1q, xp2q, and xp3q are linearly dependent
since 5xp1q ´ 2xp2q ` xp3q “ 0

Rank

Some matrix concepts arise from viewing columns or rows of the matrix as vectors. Assume
A P Rmˆn.

• rankpAq is the maximum number of linearly independent rows or columns of a matrix.

• rankpAq ď mintm,nu.

• A matrix is full rank if rankpAq “ mintm,nu. It is full row rank if rankpAq “ m. It is
full column rank if rankpAq “ n.

• a square matrix A P Rnˆn is singular if rankpAq ă n and non-singular if rankpAq “ n.

• rankpAq “ rankpAT q “ rankpATAq “ rankpAAT q. (Show this in HW.)

• rankpABq ď mintrankpAq, rankpBqu. (Hint: Columns of AB are spanned by columns
of A and rows of of AB are spanned by rows of B.)

• if Ax “ 0m for some x ‰ 0n, then rankpAq ď n ´ 1.

Column space

Definition: The column space of a matrix, denoted by CpAq is the vector space spanned by
the columns of the matrix, that is,

CpAq “ tx : there exists a vector c such that x “ Acu.
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This means that if x P CpAq, we can find coefficients cj such that

x “
ÿ

j

cja
pjq

where apjq “ A¨j denotes the jth column of matrix A.

• The column space of a matrix consists of all vectors formed by multiplying that matrix
by any vector.

• The number of basis vectors for CpAq is then the number of linearly independent
columns of the matrix A, and so, dim pCpAqq “ rankpAq.

• The dimension of a space is the number of vectors in its basis.

Example A.2

Let A “

»

—

—

–

1 1 ´3
1 2 ´1
1 3 1
1 4 3

fi

ffi

ffi

fl

and c “

»

–

5
4
3

fi

fl. Show that Ac is a linear combination of columns

in A.

solution:

Ac “

»

—

—

–

1 ˆ 5 ` 1 ˆ 4 ` p´3q ˆ 3
1 ˆ 5 ` 2 ˆ 4 ` p´1q ˆ 3
1 ˆ 5 ` 3 ˆ 4 ` 1 ˆ 3
1 ˆ 5 ` 4 ˆ 4 ` 3 ˆ 3

fi

ffi

ffi

fl

“

»

—

—

–

0
10
20
30

fi

ffi

ffi

fl

.

You could recognize that

Ac “ 5 ˆ

»

—

—

–

1
1
1
1

fi

ffi

ffi

fl

` 4 ˆ

»

—

—

–

1
2
3
4

fi

ffi

ffi

fl

` 3 ˆ

»

—

—

–

´3
´1
1
3

fi

ffi

ffi

fl

“ 5ap1q
` 4ap2q

` 3ap3q
“

»

—

—

–

0
10
20
30

fi

ffi

ffi

fl

.

Result A.1

rankpABq ď minprankpAq, rankpBqq.

proof: Each column of AB is a linear combination of columns of A (i.e. pABq¨j “ Abpjq),
so the number of linearly independent columns of AB cannot be greater than that of A.
Similarly, rankpABq “ rankpBTAT q, the same argument gives rankpBT q as an upper bound.

Result A.2

• (a) If A “ BC, then CpAq Ď CpBq.

• (b) If CpAq Ď CpBq, then there exists a matrix C such that A “ BC.

proof: For (a), any vector x P CpAq can be written as x “ Ad “ BpCdq.
For (b), A¨j P CpBq, so that there exists a vector cpjq such that A¨j “ Bcpjq. The matrix
C “ pcp1q, cp2q, . . . , cpnqq satisfies that A “ BC.
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4 Lecture 4: Jan 22

Last time

• Linear algebra: vector and vector space, rank of a matrix, Column space (JM Appendix
A)

Today

• Nullspace

• Intro to R

Null space

Definition: The null space of a matrix, denoted by N pAq, is N pAq “ ty : Ay “ 0u.

Result A.3

If A has full-column rank, then N pAq “ t0u.

proof: Matrix A has full-column rank means its columns are linearly independent, which
means that Ac “ 0 implies c “ 0.

Theorem A.1

Assume A P Rmˆn, then dimpCpAqq “ r and dimpN pAqq “ n ´ r, where r “ rankpAq.

See JM Appendix Theorem A.1 for the proof.
proof: Denote dimpN pAqq by k, to be determined, and construct a set of basis vectors
for N pAq :

␣

up1q,up2q, . . . ,upkq
(

, so that Aupiq
“ 0, for i “ 1, 2, . . . , k. Now, construct

a basis for Rn by adding the vectors
␣

upk`1q, . . . ,upnq
(

, which are not in N pAq. Clearly,

Aupiq
P CpAq for i “ k ` 1, . . . , n, and so the span of these vectors form a subspace of CpAq.

These vectors
!

Aupiq, i “ k ` 1, . . . , n
)

are also linearly independent from the following ar-

gument: suppose
řn

i“k`1 ciAupiq
“ 0; then

řn
i“k`1 ciAupiq

“ A
“
řn

i“k`1 ciu
piq
‰

“ 0, and

hence
řn

i“k`1 ciu
piq is a vector in N pAq. Therefore, there exist bi such that

řn
i“k`1 ciu

piq “
řk

i“1 biu
piq, or

řk
i“1 biu

piq ´
řn

i“k`1 ciu
piq “ 0. Since

␣

upiq
(

form a basis for Rn, ci must all

be zero. Therefore Aupiq, i “ k ` 1, . . . , n are linearly independent. At this point, since
spantAupk`1q, . . . ,Aupnq

u Ď CpAq, dim pCpAqq is at least n ´ k. Suppose there is a vector
y that is in CpAq, but not in the span; then there exists upn`1q so that y “ Aupn`1q and
upn`1q is linearly independent of tupk`1q, . . . ,upnqu (and clearly not in N pAq), making n ` 1
linearly independent vectors in Rn. Since that is not possible, the span is equal to CpAq and
dimpCpAqq “ n ´ k “ r “ rankpAq, so that k “ dimpN pAqq “ n ´ r.

Interpretation: “dimension of column space + dimension of null space = # columns”
Mis-Interpretation: Columns space and null space are orthogonal complement to each other.
They are of different orders in general!
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Lecture 5, R Basics
MATH-7260 Linear Models

Dr. Xiang Ji @ Tulane University

January 27, 2025
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R basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

styles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Arithmetic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Locating and deleting objects: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Operations on vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
R commands on vector/matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Comparison (logic operator) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Other operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Control flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Define a function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Install packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Load packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Announcement
• Just stay warm.

R basics
styles

(reading assignment)

Checkout Style guide in Advanced R and the tidyverse style guide.

Arithmetic

R can do any basic mathematical computations.

symbol use
+ addition
- subtraction
* multiplication
/ division
ˆ power
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symbol use
%% modulus
exp() exponent
log() natural logarithm
sqrt() square root
round() rounding
floor() flooring
ceiling() ceiling

Objects

You can create an R object to save results of a computation or other command.

Example 1
x <- 3 + 5
x

## [1] 8

• In most languages, the direction of passing through the value into the object goes from right to left
(e.g. with “=”). However, R allows both directions (which is actually bad!). In this course, we encourage
the use of “<-” or “=”. There are people liking “=” over “<-” for the reason that “<-” sometimes break
into two operators “< -”.

Example 2
x < - 3 + 5

## [1] FALSE
x

## [1] 8

• For naming conventions, stick with either “.” or “_” (refer to the style guide).

Example 3
sum.result <- x + 5
sum.result

## [1] 13

• important: many names are already taken for built-in R functions. Make sure that you don’t override
them.

Example 4
sum(2:5)

## [1] 14
sum

## function (..., na.rm = FALSE) .Primitive("sum")
sum <- 3 + 4 + 5
sum(5:8)

## [1] 26
sum

## [1] 12
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• R is case-sensitive. “Math.7260” is different from “math.7260”.

Locating and deleting objects:

The commands “objects()” and “ls()” will provide a list of every object that you’ve created in a session.
objects()

## [1] "sum" "sum.result" "x"
ls()

## [1] "sum" "sum.result" "x"

The “rm()” and “remove()” commands let you delete objects (tip: always clearn-up your workspace as the
first command)
rm(list=ls()) # clean up workspace

Vectors

Many commands in R generate a vector of output, rather than a single number.

The “c()” command: creates a vector containing a list of specific elements.

Example 1
c(7, 3, 6, 0)

## [1] 7 3 6 0
c(73:60)

## [1] 73 72 71 70 69 68 67 66 65 64 63 62 61 60
c(7:3, 6:0)

## [1] 7 6 5 4 3 6 5 4 3 2 1 0
c(rep(7:3, 6), 0)

## [1] 7 6 5 4 3 7 6 5 4 3 7 6 5 4 3 7 6 5 4 3 7 6 5 4 3 7 6 5 4 3 0

Example 2 The command “seq()” creates a sequence of numbers.
seq(7)

## [1] 1 2 3 4 5 6 7
seq(3, 70, by = 6)

## [1] 3 9 15 21 27 33 39 45 51 57 63 69
seq(3, 70, length = 6)

## [1] 3.0 16.4 29.8 43.2 56.6 70.0

Operations on vectors

Use brackets to select element of a vector.
x <- 73:60
x[2]

## [1] 72
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x[2:5]

## [1] 72 71 70 69
x[-(2:5)]

## [1] 73 68 67 66 65 64 63 62 61 60

Can access by “name” (safe with column/row order changes)
y <- 1:3
names(y) <- c("do", "re", "mi")
y[3]

## mi
## 3
y["mi"]

## mi
## 3

R commands on vectors

command usage
sum() sum over elements in vector
mean() compute average value
sort() sort elements in a vector
min(), max() min and max values of a vector
length() length of a vector
summary() returns the min, Q1, median, mean, Q3, and

max values of a vector
sample(x, size, replace = FALSE, prob = NULL) takes a random sample from a vector with or

without replacement

Exercise Write a command to generate a random permutation of the numbers between 1 and 5 and save it
to an object.

Matrix

matrix() command creates a matrix from the given set of values
matrix.example <- matrix(rnorm(100), nrow = 10, ncol = 10, byrow = TRUE)
matrix.example

## [,1] [,2] [,3] [,4] [,5] [,6]
## [1,] 0.3666982 -1.7669433 1.7641834 -0.61621887 1.4863224 -0.94479077
## [2,] -0.9857926 -1.2483619 -0.1926700 0.15690203 0.5847165 -1.93870114
## [3,] 1.8374926 -0.1019404 0.3921290 1.66280129 -0.1326306 1.02612476
## [4,] -0.1215171 1.7519705 1.7286263 0.56500359 0.0752892 2.00487245
## [5,] 0.3809785 -1.1764969 -1.3117362 -1.77008120 0.4225604 0.38768775
## [6,] -0.8081790 0.3031515 0.2896139 1.29129656 1.7642979 -0.01015978
## [7,] -0.8699963 1.0416742 -0.2101917 -1.21447486 -1.7583827 0.78481029
## [8,] 0.3492486 -1.5457233 0.9106507 0.07285106 -1.4851710 0.09121639
## [9,] -0.6137160 0.2900285 2.1979912 -1.38086049 -1.5609317 0.35626883
## [10,] 1.9593308 -2.1541732 0.1223442 1.71848814 -1.0178962 -1.81570882
## [,7] [,8] [,9] [,10]
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## [1,] -1.1364874 2.18514605 0.7735370 -0.03889042
## [2,] -0.3107539 0.95673779 -0.2807409 -0.16059619
## [3,] -0.1206051 -0.23887993 2.2026695 -0.79009467
## [4,] 0.2567208 -0.44896466 -1.1802590 0.82425547
## [5,] 1.1109844 -0.05011302 -0.2438188 -0.19231284
## [6,] -0.2056786 -0.01680366 -1.7923752 -0.92163776
## [7,] -0.4687571 0.80052581 1.8038154 -0.24952519
## [8,] 0.1769619 -1.24786462 1.5204527 -1.98957849
## [9,] 0.6492282 0.84311980 -0.6476299 -0.49847309
## [10,] -1.5319584 0.40464881 0.5350702 -0.17699616

R commands on vector/matrix

command usage
sum() sum over elements in vector/matrix
mean() compute average value
sort() sort all elements in a vector/matrix
min(), max() min and max values of a vector/matrix
length() length of a vector/matrix
summary() returns the min, Q1, median, mean, Q3, and

max values of a vector
dim() dimension of a matrix
cbind() combine a sequence of vector, matrix or

data-frame arguments and combine by
columns

rbind() combine a sequence of vector, matrix or
data-frame arguments and combine by rows

names() get or set names of an object
colnames() get or set column names of a matrix-like

object
rownames() get or set row names of a matrix-like object

sum(matrix.example)

## [1] 1.488254
mean(matrix.example)

## [1] 0.01488254
sort(matrix.example)

## [1] -2.15417318 -1.98957849 -1.93870114 -1.81570882 -1.79237520 -1.77008120
## [7] -1.76694327 -1.75838269 -1.56093167 -1.54572329 -1.53195838 -1.48517104
## [13] -1.38086049 -1.31173623 -1.24836192 -1.24786462 -1.21447486 -1.18025905
## [19] -1.17649695 -1.13648736 -1.01789623 -0.98579258 -0.94479077 -0.92163776
## [25] -0.86999626 -0.80817903 -0.79009467 -0.64762991 -0.61621887 -0.61371604
## [31] -0.49847309 -0.46875710 -0.44896466 -0.31075391 -0.28074086 -0.24952519
## [37] -0.24381878 -0.23887993 -0.21019167 -0.20567863 -0.19267004 -0.19231284
## [43] -0.17699616 -0.16059619 -0.13263062 -0.12151707 -0.12060510 -0.10194035
## [49] -0.05011302 -0.03889042 -0.01680366 -0.01015978 0.07285106 0.07528920
## [55] 0.09121639 0.12234418 0.15690203 0.17696188 0.25672075 0.28961388
## [61] 0.29002852 0.30315153 0.34924861 0.35626883 0.36669820 0.38097853
## [67] 0.38768775 0.39212899 0.40464881 0.42256040 0.53507022 0.56500359
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## [73] 0.58471649 0.64922817 0.77353698 0.78481029 0.80052581 0.82425547
## [79] 0.84311980 0.91065069 0.95673779 1.02612476 1.04167419 1.11098445
## [85] 1.29129656 1.48632237 1.52045266 1.66280129 1.71848814 1.72862626
## [91] 1.75197050 1.76418343 1.76429791 1.80381544 1.83749262 1.95933084
## [97] 2.00487245 2.18514605 2.19799120 2.20266949
summary(matrix.example)

## V1 V2 V3 V4
## Min. :-0.9858 Min. :-2.1542 Min. :-1.3117 Min. :-1.77008
## 1st Qu.:-0.7596 1st Qu.:-1.4714 1st Qu.:-0.1139 1st Qu.:-1.06491
## Median : 0.1139 Median :-0.6392 Median : 0.3409 Median : 0.11488
## Mean : 0.1495 Mean :-0.4607 Mean : 0.5691 Mean : 0.04857
## 3rd Qu.: 0.3774 3rd Qu.: 0.2999 3rd Qu.: 1.5241 3rd Qu.: 1.10972
## Max. : 1.9593 Max. : 1.7520 Max. : 2.1980 Max. : 1.71849
## V5 V6 V7 V8
## Min. :-1.75838 Min. :-1.938701 Min. :-1.5320 Min. :-1.2479
## 1st Qu.:-1.36835 1st Qu.:-0.711133 1st Qu.:-0.4293 1st Qu.:-0.1917
## Median :-0.02867 Median : 0.223743 Median :-0.1631 Median : 0.1939
## Mean :-0.16218 Mean :-0.005838 Mean :-0.1580 Mean : 0.3188
## 3rd Qu.: 0.54418 3rd Qu.: 0.685530 3rd Qu.: 0.2368 3rd Qu.: 0.8325
## Max. : 1.76430 Max. : 2.004872 Max. : 1.1110 Max. : 2.1851
## V9 V10
## Min. :-1.7924 Min. :-1.9896
## 1st Qu.:-0.5559 1st Qu.:-0.7172
## Median : 0.1456 Median :-0.2209
## Mean : 0.2691 Mean :-0.4194
## 3rd Qu.: 1.3337 3rd Qu.:-0.1647
## Max. : 2.2027 Max. : 0.8243

Exercise Write a command to generate a random permutation of the numbers between 1 and 5 and save it
to an object.

Comparison (logic operator)

symbol use
!= not equal
== equal
> greater
>= greater or equal
< smaller
<= smaller or equal
is.na is it “Not Available”/Missing
complete.cases returns a logical vector specifying which observations/rows

have no missing values
is.finite if the value is finite
all are all values in a logical vector true?
any any value in a logical vector is true?

test.vec <- 73:68
test.vec

## [1] 73 72 71 70 69 68
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test.vec < 70

## [1] FALSE FALSE FALSE FALSE TRUE TRUE
test.vec > 70

## [1] TRUE TRUE TRUE FALSE FALSE FALSE
test.vec[3] <- NA
test.vec

## [1] 73 72 NA 70 69 68
is.na(test.vec)

## [1] FALSE FALSE TRUE FALSE FALSE FALSE
complete.cases(test.vec)

## [1] TRUE TRUE FALSE TRUE TRUE TRUE
all(is.na(test.vec))

## [1] FALSE
any(is.na(test.vec))

## [1] TRUE

Now let’s do a test of accuracy for doubles in R. Recall that for Double precision, we get approximately
log10(252) ≈ 16 decimal point for precision.
test.exponent <- -(7:18)
10ˆtest.exponent == 0

## [1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
1 - 10ˆtest.exponent == 1

## [1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE
7360 - 10ˆtest.exponent == 7360

## [1] FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE
73600 - 10ˆtest.exponent == 73600

## [1] FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

Other operators

%in%, match
test.vec

## [1] 73 72 NA 70 69 68
66 %in% test.vec

## [1] FALSE
match(66, test.vec, nomatch = 0)

## [1] 0
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70 %in% test.vec

## [1] TRUE
match(70, test.vec, nomatch = 0)

## [1] 4
match(70, test.vec, nomatch = 0) > 0 # the implementation of %in%

## [1] TRUE

Control flow

These are the basic control-flow constructs of the R language. They function in much the same way as control
statements in any Algol-like (Algol short for “Algorithmic Language”) language. They are all reserved words.

keyword usage
if if(cond) expr
if-else if(cond) cons.expr else alt.expr
for for(var in seq) expr
while while(cond) expr
break breaks out of a for loop
next halts the processing of the current iteration

and advances the looping index

Define a function

Read Function section from Advanced R by Hadley Wickham. We will visit functions in more details.
DoNothing <- function() {

return(invisible(NULL))
}
DoNothing()

In general, try to avoid using loops (vectorize your code) in R. If you have to loop, try using for loops first.
Sometimes, while loops can be dangerous (however, a smart compiler should detect this).
DoBadThing <- function() {

result <- NULL
while(TRUE) {

result <- c(result, rnorm(100))
}
return(result)

}
# DoBadThing()

Install packages

You can install R packages from several places (reference):

• Comprehensive R Archive Network (CRAN)

– Official R packages repository

– Some levels of code checks (cross platform support, version control etc)

– Most common place you will install packages
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– Pick a mirror location near you

– install.packages("packge_name")

• GitHub

– May get development version of a package

– Almost zero level of code checks

– Common place to develop a package before submitting to CRAN
install.packages("devtools")
library(devtools)
install_github("tidyverse/ggplot2")

Load packages

library(tidyverse)

## -- Attaching core tidyverse packages ------------------------ tidyverse 2.0.0 --
## v dplyr 1.1.3 v readr 2.1.4
## v forcats 1.0.0 v stringr 1.5.0
## v ggplot2 3.4.3 v tibble 3.2.1
## v lubridate 1.9.2 v tidyr 1.3.0
## v purrr 1.0.2
## -- Conflicts ------------------------------------------ tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
## i Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
require(tidyverse)
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6 Lecture 6: Jan 29

Last time

• R basics

Today

• Concepts

• Simple Linear Regression (JF Chapter 5)

Statistics: its objectives and scope (PVR Chapter 1)

We will use the word statistics in a broader sense:
Statistics refers to a body of scientific principles and methodologies that are useful for ob-
taining information about a phenomenon or a large collection of items. Statistical methods
are techniques for using limited amounts of information to arrive at conclusions – called
statistical inferences – about the phenomenon or the collection of items of interest.

Population and sample population

A population (sometimes referred to as a statistical population) is a collection (or aggregate)
of measurements about which an inference is desired.

Example: An investigator is interested in evaluating the relationship between age, blood
sugar level, and blood cholesterol level of insulin-dependent diabetics who are on a special
experimental diet. The investigator wants to answer the following questions, among others:

1. How does the blood cholesterol level change with age and blood sugar level?

2. Are higher cholesterol levels associated with higher sugar levels?

3. Do older diabetics tend to have higher sugar and cholesterol levels?

What is the population of interest in this example? The population of interest is a collection
of measurements – each of which consists of three values (age, blood sugar level, and blood
cholesterol level) – for an insulin-dependent diabetic who is on the experimental diet.

Note that, in statistics, a measurement is one of the elements form the population. In
certain populations, each measurement may consist of several values. Populations in which
each measurement

• is a single value are called univariate populations

• contains more than one value is called a multivariate population.
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Sample and sample size

A sample consists of a finite number of measurements chosen from a population. The number
of measurements in a sample is called the sample size.

Example: Answers to the questions about associations between the age, blood sugar level,
and blood cholesterol level of diabetics can be based on measurements made on a sample
of, say, n “ 40 treated insulin-dependent diabetics. Such a sample is a collection of 40
measurements, each of which consists of three values: the age, blood sugar level, and blood
cholesterol level of a treated patient.

Statistical components of a research study

A typical research study consists of three stages. The statistical techniques useful in these
three stages are commonly known as statistical methods in research, and can be divided into
three groups:

1. Methods for designing the research study

2. Methods for organizing and summarizing data

3. Methods for making inferences

In this course, we focus on the third stage that is to use the information in the samples to
make conclusions about populations (i.e., making inferences). The key statistical issue in
such inferences is their accuracy.

Example: Suppose that the average indoor radiation level in a sample of 15 homes built
on reclaimed phosphate mine lands is 0.032 WL (working level is a historical unit of con-
centration of radioactive decay products of radon). Then 0.032 WL could be regarded as an
estimate of the average indoor level in all homes built on reclaimed phosphate mine lands.

• How accurate is this estimate?

• Suppose there are a total of 4000 homes built on reclaimed lands, is our small sample
representative of the whole population?

• If our sample could be regarded as representative of the population, it would be rea-
sonable to expect that the difference between the estimated value of 0.032 WL and the
true mean radiation level for all homes will be small, but how do we get/estimate the
actual magnitude of this difference?

The natural question is whether it is possible to assess, with reasonable certainty, the mag-
nitude of the error in our estimate. For example, can we say, with a reasonable degree of
confidence, that the average level for the population of all homes will be within 0.001 WL
of the average value calculated from sample homes?

Types of populations (PVR Chapter 2.2)

Statistical populations can be classified into categories depending upon the characteristics
of the measurements contained in them.
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• Univariate and multivariate populations

– In a univariate population, each measurement consists of a single value

– In a multivariate population, measurements consist of more than one value

• Real and conceptual populations

– The population of 4000 indoor radon levels is a real population

– The population of digestibility values for sheep fed June-harvested Pensacola
Bahia grass is a conceptual population.

• Finite and infinite populations

– A population may contain only a finite number of measurements, as in the case
of the population of indoor radon levels of 4000 homes

– A population may have infinitely many measurements, as in the case of a concep-
tual population of potential digestibility measurements, in which every value in
the interval r0%, 100%s is a possible value of a measurement in the population.

• Quantitative and qualitative populations

– A measurement is said to be quantitative if its value can be interpreted on a
natural and meaningful scale

– A measurement is qualitative if its value serves the sole purpose of identifying
an object or a characteristic. The value of a qualitative measurement has no
numerical implications.

• Discrete and continuous populations

– A population is said to be discrete if the distinct values of the measurements
contained in it can be arranged in a sequence.

– A continuous population consists of measurements that take all the values in one
or more intervals of a real line.

24



Simple linear regression

Figure 7.1 shows Davis’s data on the measured and reported weight in kilograms of 101
women who were engaged in regular exercise.
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Figure 6.1: Scatterplot of Davis’s data on the measured and reported weight of 101 women.
The dashed line gives y “ x.

It’s reasonable to assume that the relationship between measured and reported weight ap-
pears to be linear. Denote:

• measured weight by yi: response variable or dependent variable

• reported weight by xi: predictor variable or independent variable

• intercept: β0

• slope: β1

• error term ϵi.

Then the simple linear regression model writes:

yi “ β0 ` β1xi ` ϵi.

For given pβ̂0, β̂1q values, the fitted value or predicted value for observation i is:

ŷi “ β̂0 ` β̂1xi.
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Therefore, the residual is
ϵ̂i “ yi ´ ŷi
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7 Lecture 7: Jan 31

Last time

• R basics

• Simple Linear Regression (JF Chapter 5)

Today

• Simple Linear Regression (JF Chapter 5)

Simple linear regression

Figure 7.1 shows Davis’s data on the measured and reported weight in kilograms of 101
women who were engaged in regular exercise.
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Figure 7.1: Scatterplot of Davis’s data on the measured and reported weight of 101 women.
The dashed line gives y “ x.

It’s reasonable to assume that the relationship between measured and reported weight ap-
pears to be linear. Denote:

• measured weight by yi: response variable or dependent variable

• reported weight by xi: predictor variable or independent variable
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• intercept: β0

• slope: β1

• residual/error term ϵi.

Then the simple linear regression model writes:

yi “ β0 ` β1xi ` ϵi.

For given pβ̂0, β̂1q values, the fitted value or predicted value for observation i is:

ŷi “ β̂0 ` β̂1xi.

Therefore, the residual is
ϵ̂i “ yi ´ ŷi

Fitting a linear model

Choose the “best” values for β0, β1 such that

SSrEs “

n
ÿ

1

´

yi ´ pβ̂0 ` β̂1xiq

¯2

“

n
ÿ

1

pyi ´ ŷiq
2

“

n
ÿ

1

ϵ̂2i

is minimized. These are least squares (LS) estimates:

β̂0 “ ȳ ´ β̂1x̄

β̂1 “
ř

pxi´x̄qpyi´ȳq
ř

pxi´x̄q2
.

Definition: The line satisfying the equation

y “ β̂0 ` β̂1x

is called the linear regression of y on x which is also called the least squares line.

For Davis’s data, we have

n “ 101

ȳ “
5780

101
“ 57.228

x̄ “
5731

101
“ 56.743

ÿ

pxi ´ x̄qpyi ´ ȳq “ 4435.9
ÿ

pxi ´ x̄q
2

“ 4539.3,

so that

β̂1 “
4435.9

4539.3
“ 0.97722

β̂0 “ 57.228 ´ 0.97722 ˆ 56.743 “ 1.7776
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Least squares estimates

The simple linear regression (SLR) model writes:

yi “ β0 ` β1xi ` ϵi.

The least squares estimates minimizes the sum of squared error (SSE) which is

SSrEs “

n
ÿ

1

´

yi ´ pβ̂0 ` β̂1xiq

¯2

“

n
ÿ

1

pyi ´ ŷiq
2

“

n
ÿ

1

ϵ̂2i .

The least squares (LS) estimates (in vector form):

β̂ls “

ˆ

β̂0

β̂1

˙

“

˜

ȳ ´ β̂1x̄
ř

pxi´x̄qpyi´ȳq
ř

pxi´x̄q2

¸

.

Definition: The line satisfying the equation

y “ β̂0 ` β̂1x

is called the linear regression of y on x which is also called the least squares line.

SLR Model in Matrix Form
»

—

—

—

–

y1
y2
...
yn

fi

ffi

ffi

ffi

fl

“

»

—

—

—

–

β0 ` β1x1

β0 ` β1x2
...

β0 ` β1xn

fi

ffi

ffi

ffi

fl

`

»

—

—

—

–

ϵ1
ϵ2
...
ϵn

fi

ffi

ffi

ffi

fl

»

—

—

—

–

y1
y2
...
yn

fi

ffi

ffi

ffi

fl

“

»

—

—

—

–

1 x1

1 x2
...

...
1 xn

fi

ffi

ffi

ffi

fl

„

β0

β1

ȷ

`

»

—

—

—

–

ϵ1
ϵ2
...
ϵn

fi

ffi

ffi

ffi

fl

Jargons

• X is called the design matrix

• β is the vector of parameters

• ϵ is the error vector

• Y is the response vector.
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The Design Matrix

Xnˆ2 “

»

—

—

—

–

1 x1

1 x2
...

...
1 xn

fi

ffi

ffi

ffi

fl

Vector of Parameters

β2ˆ1 “

„

β0

β1

ȷ

Vector of Error terms

ϵnˆ1 “

»

—

—

—

–

ϵ1
ϵ2
...
ϵn

fi

ffi

ffi

ffi

fl

Vector of Responses

Ynˆ1 “

»

—

—

—

–

y1
y2
...
yn

fi

ffi

ffi

ffi

fl

Gramian Matrix

XTX “

„

n
ř

i xi
ř

i xi

ř

i x
2
i

ȷ

Therefore, we have

Y “ Xβ ` ϵ.

Assume the Gramian matrix has full rank (which actually should be the case, why?), we
want to show that

β̂ls “ pXTXq
´1XTY.

The inverse of the Gramian matrix is

pXTXq
´1

“
1

n
ř

ipxi ´ x̄q2

„
ř

i x
2
i ´

ř

i xi

´
ř

i xi n

ȷ

30



Now we have

β̂ls “pXTXq
´1XTY

“
1

n
ř

ipxi ´ x̄q2

„
ř

i x
2
i ´

ř

i xi

´
ř

i xi n

ȷ „

1T
n

xT

ȷ

y

“
1

n
ř

ipxi ´ x̄q2

„
ř

i x
2
i ´

ř

i xi

´
ř

i xi n

ȷ „
ř

i yi
ř

i xiyi

ȷ

“
1

n
ř

ipxi ´ x̄q2

„

p
ř

i x
2
i qp

ř

i yiq ´ p
ř

i xiqp
ř

i xiyiq
n
ř

i xiyi ´ p
ř

i xiqp
ř

i yiq

ȷ

“

«

ȳ ´
ř

pxi´x̄qpyi´ȳq
ř

pxi´x̄q2
x̄

ř

pxi´x̄qpyi´ȳq
ř

pxi´x̄q2

ff

31



9 Lecture 9: Feb 3

Last time

• Introduction of simple linear regression

Today

• Simple correlation

From last lecture: Assume the Gramian matrix has full rank (which actually should be the
case, why?)

XTX “

„

n
ř

i xi
ř

i xi

ř

i x
2
i

ȷ

Proof: By Cauchy-Schwarz inequality, we have

n
ÿ

i

x2
i ě p

ÿ

i

xiq
2

where the equality holds only if all xi are equal.

Some properties:

• (a)
ř

xiϵ̂i “ 0.

• (b)
ř

ŷiϵ̂i “ 0 (HW1).

Proof: For (a), we look at
XT ϵ̂

“XT
pY ´ Xβ̂q

“XT
rY ´ XpXTXq

´1XTYs

“XTY ´ XTXpXTXq
´1XTY

“XTY ´ XTY

“0

Other quantities in Matrix Form

Fitted values

Ŷ “

»

—

—

—

–

ŷ1
ŷ2
...
ŷn

fi

ffi

ffi

ffi

fl

“

»

—

—

—

–

β̂0 ` β̂1x1

β̂0 ` β̂1x2
...

β̂0 ` β̂1xn

fi

ffi

ffi

ffi

fl

“

»

—

—

—

–

1 x1

1 x2
...

...
1 xn

fi

ffi

ffi

ffi

fl

„

β̂0

β̂1

ȷ

“ Xβ̂
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Hat matrix

Ŷ “Xβ̂

Ŷ “XpXTXq
´1XTY

Ŷ “HY

where H “ XpXTXq´1XT is called “hat matrix” because it turns Y into Ŷ.

Simple correlation

Having calculated the least squares line, it is of interest to determine how closely the line
fits the scatter of points. There are many ways of answering it. The standard deviation of
the residuals, SE, often called the standard error of the regression or the residue standard
error, provides one sort of answer. Because of estimation considerations, the variance of the
residuals is defined using degrees of freedom n ´ 2:

S2
ϵ “

ř

ϵ̂2i
n ´ 2

.

The residual standard error is,

Sϵ “

c

ř

ϵ̂2i
n ´ 2

For the Davis’s data, the sum of squared residuals is
ř

ϵ̂2i “ 418.87, and thus the standard
error of the regression is

Sϵ “

c

418.87

101 ´ 2
“ 2.0569kg.

On average, using the least-squares regression line to predict measured weight from reported
weight results in an error of about 2 kg.

Sum of squares:

• Total sum of squares (TSS) for Y: TSS “
ř

pyi ´ ȳq2

• Residual sum of squares (RSS): RSS “
ř

pyi ´ ŷiq
2

• regression sum of squares (RegSS): RegSS “ TSS ´ RSS “
ř

pŷi ´ ȳq2

• RegSS ` RSS “ TSS
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9 Lecture 10: Feb 5

Last time

• Sum of squares

Today

• R-square

• Statistical model of SLR

Sample correlation coefficient

Definition: The sample correlation coefficient rxy of the paired data px1, y1q, px2, y2q, ...,
pxn, ynq is defined by

rxy “

ř

pxi ´ x̄qpyi ´ ȳq{pn ´ 1q
a

ř

pxi ´ x̄q2{pn ´ 1q ˆ
ř

pyi ´ ȳq2{pn ´ 1q
“

sxy
sxsy

sxy is called the sample covariance of x and y:

sxy “

ř

pxi ´ x̄qpyi ´ ȳq

n ´ 1

sx “
a

ř

pxi ´ x̄q2{pn ´ 1q and sy “
a

ř

pyi ´ ȳq2{pn ´ 1q are, respectively, the sample
standard deviations of X and Y .

Some properties of rxy:

• rxy is a measure of the linear association between x and y in a dataset.

• correlation coefficients are always between ´1 and 1:

´1 ď rxy ď 1

• The closer rxy is to 1, the stronger the positive linear association between x and y

• The closer rxy is to ´1, the stronger the negative linear association between x and y

• The bigger |rxy|, the stronger the linear association

• If |rxy| “ 1, then x and y are said to be perfectly correlated.

• β̂1 “
ř

pxi´x̄qpyi´ȳq
ř

pxi´x̄q2
“

sxy
s2x

“ rxy
sy
sx
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R-square

The ratio of RegSS to TSS is called the coefficient of determination, or sometimes, simply
“r-square”. it represents the proportion of variation observed in the response variable y
which can be “explained” by its linear association with x.

• In simple linear regression, “r-square” is in fact equal to r2xy. (But this isn’t the case
in multiple regression.)

• It is also equal to the squared correlation between yi and ŷi. (This is the case in
multiple regression.)

For Davis’s regression of measured on reported weight:

TSS “ 4753.8

RSS “ 418.87

RegSS “ 4334.9

Thus,

r2 “
4334.9

4753.8
“ 1 ´

418.87

4753.8
“ 0.9119

The statistical model of Simple Linear Regression

Standard statistical inference in simple regression is based on a statistical model that describes
the population or process that is sampled:

yi “ β0 ` β1xi ` ϵi

where the coefficients β0 and β1 are the population regression parameters. The data are
randomly sampled from some population of interest.

• yi is the value of the response variable

• xi is the explanatory variable

• ϵi represents the aggregated omitted causes of y (i.e., the causes of y beyond the
explanatory variable), other explanatory variables that could have been included in the
regression model, measurement error in y, and whatever component of y is inherently
random.

Key assumptions of SLR

The key assumptions of the SLR model concern the behavior of the errors, equivalently, the
distribution of y conditional on x:

• Linearity. The expectation of the error given the value of x is 0: E pϵq ” E pϵ|xiq “ 0.
And equivalently, the expected value of the response variable is a linear function of the
explanatory variable: µi ” E pyiq ” E pyi|xiq “ E pβ0 ` β1xi ` ϵi|xiq “ β0 ` β1xi.
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• Constant variance. The variance of the errors is the same regardless of the value of
x: Var pϵ|xiq “ σ2

ϵ . The constant error variance implies constant conditional variance
of y on given x: Var py|xiq “ E ppyi ´ µiq

2q “ E ppyi ´ β0 ´ β1xiq
2q “ E pϵ2i q “ σ2

ϵ .
(Question: why the last equal sign?)

• Normality. The errors are independent identically distributed with Normal distribution

with mean 0 and variance σ2
ϵ . Write as ϵi

iid
„ Np0, σ2

ϵ q. Equivalently, the conditional

distribution of the response variable is normal: yi
iid
„ Npβ0 ` β1xi, σ

2
ϵ q.

• Independence. The observations are sampled independently.

• Fixed X, or X measured without error and independent of the error.

– For experimental research where X values are under direct control of the re-
searcher (i.e. X’s are fixed). If the experiment were replicated, then the values of
X would remain the same.

– For research where X values are sampled, we assume the explanatory variable is
measured without error and the explanatory variable and the error are indepen-
dent in the population from which the sample is drawn.

• X is not invariant. X’s can not be all the same.

Figure 9.1 shows the assumptions of linearity, constant variance, and normality in SLR
model.

Figure 9.1: The assumptions of linearity, constant variance, and normality in simple regres-
sion. The graph shows the conditional population distributions PrpY |xq of Y for several
values of the explanatory variable X, labeled as x1, x2, . . . , x5. The conditional means of Y
given x are denoted µ1, . . . , µ5.
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11 Lecture 11: Feb 10

Last time

• Introduction of simple linear regression

Today

• HW2 posted

• The statistical model of the SLR (JF chapter 6)

• Properties of the Least-Squares estimator

• Inference of SLR model

Properties of the Least-Squares estimator

Under the strong assumptions of the simple linear regression model, the least squares co-
efficients β̂ls have several desirable properties as estimators of the population regression
coefficients β0 and β1:

• The least-squares intercept and slope are linear estimators, in the sense that they are
linear functions of the observations yi.
Proof:
method (a) β̂ “ pXTXq´1XTY

method (b) β̂1 “
ř

pxi´x̄qpyi´ȳq
ř

pxi´x̄q2
“

ř

pxi´x̄qyi
ř

pxi´x̄q2
´

ř

pxi´x̄qȳ
ř

pxi´x̄q2
“

ř pxi´x̄q
ř

pxi´x̄q2
yi “

ř

kiyi where

ki “
pxi´x̄q

ř

pxi´x̄q2

and β̂0 “ ȳ ´ β̂1x̄

• The simple least-squares coefficients are unbiased estimators of the population regres-
sion coefficients:

E
´

β̂0

¯

“ β0

E
´

β̂1

¯

“ β1

Proof:

method (a) E
´

β̂
¯

“ E
`

pXTXq´1XTY
˘

“ E
`

pXTXq´1XTXβ
˘

“ β. (note: E pY q “

E pXβ ` ϵq “ E pXβq ` E pϵq “ Xβ)

method (b) recall that β̂1 “
ř

kiyi where ki “
pxi´x̄q

ř

pxi´x̄q2
. First, we want to show

1.
ř

ki “ 0

2.
ř

kixi “ 1

They are actually quite easy:
ř

ki “
ř

i
pxi´x̄q

ř

jpxj´x̄q2
“

p
ř

i xiq´nx̄
ř

jpxj´x̄q2
“ 0, and

ř

kixi “

ř

i
pxi´x̄qxi
ř

jpxj´x̄q2
“

p
ř

i x
2
i q´x̄p

ř

i xiq
ř

jpxj´x̄q2
“

p
ř

i x
2
i q´nx̄2

ř

jpxj´x̄q2
“ 1.
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Now E
´

β̂1

¯

“ E p
ř

kiyiq “
ř

rkiE pyiqs “
ř

rkipβ0 ` β1xiqs “ β0

ř

ki ` β1

ř

pkixiq “

β1, and E
´

β̂0

¯

“ E
´

ȳ ´ β̂1x̄
¯

“ E pȳq ´ x̄E
´

β̂1

¯

“ E
`

1
n

ř

yi
˘

´ x̄β1 “ 1
n

r
ř

E pyiqs ´

x̄β1 “ 1
n

ř

rβ0 ` xiβ1s ´ x̄β1 “ β0

• Both β̂0 and β̂1 have simple sampling variances:

Varpβ̂0q “
σ2
ϵ

ř

x2
i

n
ř

pxi ´ x̄q2

Varpβ̂1q “
σ2
ϵ

ř

pxi ´ x̄q2

Proof:

Varpβ̂1q “ Varp
ř

kiyiq “
ř

k2iVarpyiq “ σ2
ϵ

ř

k2i “ σ2
ϵ

ř

ipxi´x̄q2

r
ř

jpxj´x̄q2s2
“

σ2
ϵ

ř

pxi´x̄q2
, and

Varpβ̂0q “ Varpȳ ´ β̂1x̄q “ Varpȳq ` px̄q2Varpβ̂1q ´ 2x̄CovpȲ, β̂1q.
Now,

Varpȳq “ Var

˜

1

n

n
ÿ

i“1

yi

¸

“
1

n2

n
ÿ

i“1

Varpyiq “
σ2

n
,

Varpβ̂1q “
σ2
ϵ

ř

pxi ´ x̄q2
,

and

CovpȲ , β̂1q “ Cov

#

1

n

n
ÿ

i“1

Yi,

řn
j“1pxj ´ x̄qYj

řn
i“1pxi ´ x̄q2

+

“
1

n

1
řn

i“1pxi ´ x̄q2
Cov

#

n
ÿ

i“1

Yi,
n
ÿ

j“1

pxj ´ x̄qYj

+

“
1

n
řn

i“1pxi ´ x̄q2

n
ÿ

i“1

pxj ´ x̄q

n
ÿ

j“1

CovpYi, Yjq

“
1

n
řn

i“1pxi ´ x̄q2

n
ÿ

i“1

pxj ´ x̄qσ2

“ 0.

Finally,

Varpβ̂0q “
σ2

n
`

σ2x̄2

řn
i“1pxi ´ x̄q2

“
σ2

n
řn

i“1pxi ´ x̄q2

#

n
ÿ

i“1

pxi ´ x̄q
2

` nx̄2

+

“
σ2

řn
i“1 x

2
i

n
řn

i“1pxi ´ x̄q2
.
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12 Lecture 12 Feb 12

Last time

• Properties of the Least-Squares estimator

Today

• Statistical inference of the SLR model

• Multiple linear regression

Properties of the Least-Squares estimator

• Rewrite the formula for Varpβ̂1q “
σ2
ϵ

pn´1qS2X
, we see that the sampling variance of the

slope estimate will be small when

– The error variance σ2
ϵ is small

– The sample size n is large

– The explanatory-variable values are spread out (i.e., have a large variance, S2
X)

• (Gauss-Markov theorem) Under the assumptions of linearity, constant variance, and
independence, the least-squares estimators are BLUE (Best Linear Unbiased Estima-
tor), that is they have the smallest sampling variance and are unbiased. (show this)
Proof:
Let rβ1 be another linear unbiased estimator such that rβ1 “

ř

ciyi. For rβ1 is still

unbiased as above, E
´

rβ1

¯

“ β0

ř

ci ` β1

ř

cixi “ β1 for all β1, we have
ř

ci “ 0 and
ř

cixi “ 1.

Var
´

rβ1

¯

“ σ2
ϵ

ř

c2i
Let ci “ ki ` di, then

Var
´

rβ1

¯

“σ2
ϵ

ÿ

pki ` diq
2

“σ2
ϵ

”

ÿ

ki
2

`
ÿ

di
2

` 2
ÿ

kidi

ı

“Var
´

β̂1

¯

` σ2
ϵ

ÿ

d2i ` 2σ2
ϵ

ÿ

kidi

Now we show the last term is 0 to finish the proof.

ÿ

kidi “
ÿ

kipci ´ kiq “
ÿ

ciki ´
ÿ

k2
i

“
ÿ

i

«

ci
xi ´ x̄

ř

jpxj ´ x̄q2

ff

´
1

ř

ipxi ´ x̄q2

“ 0
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• Under the full suite of assumptions, the least-squares coefficients β̂0 and β̂1 are the
maximum-likelihood estimators of β0 and β1. (show this)
Proof:
The log likelihood under the full suite of assumptions is ℓ “ ´ log

“

p2πq
n
2 σn

ϵ

‰

´ 1
2σ2

ϵ
pY´

XβqT pY´Xβq. Maximizing the likelihood is equivalent as minimizing pY´XβqT pY´

Xβq “ ϵT ϵ which is the SSE.

• Under the assumption of normality, the least-squares coefficients are themselves nor-
mally distributed. Summing up,

β̂0 „Npβ0,
σ2
ϵ

ř

x2
i

n
ř

pxi ´ x̄q2
q

β̂1 „Npβ1,
σ2
ϵ

ř

pxi ´ x̄q2
q
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14 Lecture 14 Feb 17

Last time

• Inference of SLR model

Today

• Confidence intervals for SLR

• Review Lab 1 and 2

• Multiple linear regression

Statistical inference of the SLR model

Now we have the distribution of β̂0 and β̂1

β̂0 „Npβ0,
σ2
ϵ

ř

x2
i

n
ř

pxi ´ x̄q2
q

β̂1 „Npβ1,
σ2
ϵ

ř

pxi ´ x̄q2
q.

However, σϵ is never known in practice. Instead, an unbiased estimator of σ2
ϵ is given by

σ̂ϵ
2

“ MSrEs “
SSrEs

n ´ 2
.

show that E p
ř

pyi ´ ŷiq
2q “ σ2

ϵ pn ´ 2q.
Proof:

MSrEs “

ř

pyi ´ ŷiq
2

n ´ 2
,

we want to show E p
ř

pyi ´ ŷiq
2q “ σ2

ϵ pn ´ 2q.
LHS: E p

ř

pyi ´ ŷiq
2q “

ř

i

“

E pyi ´ ŷiq
2
‰
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and Erpyi´ ŷiq
2s “ Varpyi´ ŷiq`rE pyi ´ ŷiqs2 “ Varpyi´ ŷiq “ Varpyiq`Varpŷiq´2covpyi, ŷiq

Varpyiq “ σ2
ϵ

Varpŷiq “ Varpȳ ` β̂1pxi ´ x̄qq

“ Varpȳq ` pxi ´ x̄q
2Varpβ̂1q ` 2pxi ´ x̄qCovpȳ, β̂1q

Covpȳ, β̂1q “ Covpȳ,
ÿ

kiyiq

“
ÿ

i

Covpȳ, kiyiq

“
ÿ

i

ki
n
Varpyiq

“
1

n

ÿ

ki

“ 0

6 Varpŷiq “ Varpȳq ` pxi ´ x̄q
2Varpβ̂1q

“
1

n
σ2
ϵ `

σ2
ϵ pxi ´ x̄q2
ř

pxi ´ x̄q2

“ σ2
ϵ

„

1

n
`

pxi ´ x̄q2
ř

pxi ´ x̄q2

ȷ

Now, we derive the last term covpyi, ŷiq:

covpyi, ŷiq “ covpyi, ȳ ` β̂1pxi ´ x̄qq

“ covpyi,
1

n

ÿ

j

yj ` pxi ´ x̄q
ÿ

j

kjyjq

“ covpyi,
ÿ

j

„

1

n
` pxi ´ x̄qkj

ȷ

yjq

“ σ2
ϵ

„

1

n
` pxi ´ x̄qki

ȷ

“ σ2
ϵ

„

1

n
`

pxi ´ x̄q2
ř

pxi ´ x̄q2

ȷ

Therefore, we have for ith residue

Varpyi ´ ŷiq “ Varpyiq ` Varpŷiq ´ 2covpyi, ŷiq

“ σ2
ϵ ` σ2

ϵ

„

1

n
`

pxi ´ x̄q2
ř

pxi ´ x̄q2

ȷ

´ 2σ2
ϵ

„

1

n
`

pxi ´ x̄q2
ř

pxi ´ x̄q2

ȷ

“ σ2
ϵ

„

1 ´
1

n
´

pxi ´ x̄q2
ř

pxi ´ x̄q2

ȷ

.

And finally, sum over i we get

ÿ

i

Varpyi ´ ŷiq “ σ2
ϵ

ÿ

i

„

1 ´
1

n
´

pxi ´ x̄q2
ř

pxi ´ x̄q2

ȷ

“ pn ´ 2qσ2
ϵ
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15 Lecture 15 Feb 19

Last time

• Confidence intervals for SLR

Today

• Review Lab 1 and 2

• Multiple linear regression

Confidence intervals

Now we substitute σ̂2
ϵ into the distribution of β̂0 and β̂1

β̂1 „Npβ1,
σ2
ϵ

ř

pxi ´ x̄q2
q

β̂0 „Npβ0,
σ2
ϵ

ř

x2
i

n
ř

pxi ´ x̄q2
q

to get the estimated standard errors:

SE
Ź

pβ̂1q “

d

MSrEs
ř

pxi ´ x̄q2

SE
Ź

pβ̂0q “

d

MSrEs

ˆ

1

n
`

x̄2

ř

pxi ´ x̄q2

˙

And the 100p1 ´ αq% confidence intervals for β1 and β0 are given by

β̂1 ˘ tpn ´ 2, α{2q

d

MSrEs

Sxx

β̂0 ˘ tpn ´ 2, α{2q

d

MSrEs

ˆ

1

n
`

x̄2

Sxx

˙

where Sxx “
ř

pxi ´ x̄q2

Confidence interval for E pY |X “ x0q

The conditional mean E pY |X “ x0q can be estimated by evaluating the regression function
µpx0q at the estimates β̂0, β̂1. The conditional variance of the expression isn’t too difficult
(already shown):

Varpβ̂0 ` β̂1x0|X “ x0q “ σ2
p
1

n
`

px0 ´ x̄q2

Sxx

q

This leads to a confidence interval of the form

β̂0 ` β̂1x0 ˘ tpn ´ 2, α{2q

d

MSrEs

ˆ

1

n
`

px0 ´ x̄q2

Sxx

˙
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Prediction interval

Often, prediction of the response variable Y for a given value, say x0, of the independent
variable of interest. In order to make statements about future values of Y , we need to take
into account

• the sampling distribution of β̂0 and β̂1

• the randomness of a future value Y .

We have seen the predicted value of Y based on the linear regression is given by Ŷ0 “

β̂0 ` β̂1x0.

The 95% prediction interval has the form

Ŷ0 ˘ tpn ´ 2, α{2q

d

MSrEs

ˆ

1 `
1

n
`

px0 ´ x̄q2

Sxx

˙

.

Hypothesis test

To test the hypothesis H0 : β1 “ βslope that the population slope is equal to a specific value

βslope (most commonly, the null hypothesis has βslope “ 0), we calculate the test statistic
(T -statistics) with df “ n ´ 2

t0 “
β̂1 ´ βslope

SE
Ź

pβ̂1q
„ tn´2

Some questions to answer using regression analysis:

1. What is the meaning, in words, of β1?
Answer: β1 is the population slope parameter of the SLR model that represents the
amount of increase in the mean of the response variable with a unit increase of the
explanatory variable.

2. True/False: (a) β1 is a statistic (b) β1 is a parameter (c) β1 is unknown.
Answer: (a) False (b) True (C) True. In reality, the true population parameters are
almost never known. However, in simulation studies, we do know them.

3. True/False: (a) β̂1 is a statistic (b) β̂1 is a parameter (c)β̂1 is unknown
Answer: (a) True (b) False (C) False. β̂1 is an estimate of the population parameter
β1.

4. Is β̂1 “ β1 ?

Answer: No. However, E
´

β̂1

¯

“ β1

Multiple linear regression

JF 5.2+6.2
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Multiple linear regression - an example

An example on the prestige, education, and income levels of 45 U.S. occupations (Duncan’s
data):

income education prestige
accountant 62 86 82

pilot 72 76 83
architect 75 92 90
author 55 90 76
chemist 64 86 90
minister 21 84 87
professor 64 93 93
dentist 80 100 90
reporter 67 87 52
engineer 72 86 88
lawyer 76 98 89
teacher 48 91 73

“prestige” represents the percentage of respondents in a survey who rated an occupation as
“good” or “excellent” in prestige, “education” represents the percentage of incumbents in the
occupation in the 1950 U.S. Census who were high school graduates, and “income” represents
the percentage of occupational incumbents who earned incomes in excess of $3,500.

Using the pairs command in R, we can look at the pairwise scatter plot between the three
variables as in Figure 15.1.
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Figure 15.1: Scatterplot matrix for occupational prestige, level of education, and level of
income of 45 U.S. occupations in 1950.

Consider a regression model for the “prestige” of occupation i, Yi, in which the mean of Yi is
a linear function of two predictor variables Xi1 “ income,Xi2 “ education for occupations
i “ 1, 2, . . . , 45:

Y “ β0 ` β1income ` β2education ` error

or
Yi “ β0 ` β1Xi1 ` β2Xi2 ` ϵi

or
Y1 “ β0 ` β1X11 ` β2X12 ` ϵ1

Y2 “ β0 ` β1X21 ` β2X22 ` ϵ2
... “

...

Y45 “ β0 ` β1X45,1 ` β2X45,2 ` ϵ45
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16 Lecture 16 Feb 24

Last time

• Confidence intervals for SLR

• Multiple linear regression

Today

• Multiple correlation

• Lab review

A multiple linear regression (MLR) model with p independent variables

Let p independent variables be denoted by x1, . . . , xp.

• Observed values of p independent variables for ith subject from sample denoted by
xi1, . . . , xip

• response variable for ith subject denoted by Yi

• For i “ 1, . . . , n, MLR model for Yi:

Yi “ β0 ` β1xi1 ` β2xi2 ` ¨ ¨ ¨ ` βpxip ` ϵi

• As in SLR, ϵ1, . . . , ϵn
iid
„ Np0, σ2q

Least squares estimates of regression parameters minimize SSrEs:

SSrEs “

n
ÿ

i“1

pyi ´ β0 ´ β1xi1 ´ ¨ ¨ ¨ ´ βpxipq
2

σ̂2 “
SSrEs

n´p´1

Interpretations of regression parameters:

• σ2 is unknown error variance parameter

• β0, β1, . . . , βp are p ` 1 unknown regression parameters:

– β0: average response when x1 “ x2 “ ¨ ¨ ¨ “ xp “ 0

– βi is called a partial slope for xi. Represents mean change in y per unit increase
in xi with all other independent variables held fixed.
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Matrix formulation of MLR

Let a vector for p observed independent variables for individual i be defined by

xi¨ “ p1, xi1, xi2, . . . , xipq.

The MLR model for Y1, . . . , Yn is given by

Y1 “ β0 ` β1X11 ` β2X12 ` ¨ ¨ ¨ ` βpX1p ` ϵ1

Y2 “ β0 ` β1X21 ` β2X22 ` ¨ ¨ ¨ ` βpX2p ` ϵ2
... “

...

Yn “ β0 ` β1Xn1 ` β2Xn2 ` ¨ ¨ ¨ ` βpXnp ` ϵn

This system of n equations can be expressed using matrices:

Y “ Xβ ` ϵ

where

• Y denotes a response vector of size n ˆ 1

• X denotes a design matrix of size n ˆ pp ` 1q

• β denotes a vector of regression parameters of size pp ` 1q ˆ 1

• ϵ denotes an error vector of size n ˆ 1

Here, the error vector ϵ is assumed to follow a multivariate normal distribution with variance-
covariance matrix σ2In. For individual i,

yi “ xi¨β ` ϵi.

Some simplified expressions: (a is a known pp ` 1q ˆ 1 vector)

β̂ “ pXTXq
´1XTY

Var
´

β̂
¯

“ σ2
pXTXq

´1

“ Σ

Var
Ź

pβ̂q “ MSrEspXTXq
´1

“ Σ
Ź

Var
Ź

paT β̂q “ aTΣ
Ź

a

Question: what are the dimensions of each of these quantities?

• pXTXq´1 may be verbalized as “ x transposed x inverse”

• Σ
Ź

is the estimated variance-covariance matrix for the estimate of the regression pa-
rameter vector β̂

48



• X is assumed to be of full rank.

Some more simplified expressions:

Ŷ “ Xβ̂

“ XpXTXq
´1XTY

“ HY

ϵ̂ “ Y ´ Ŷ

“ Y ´ Xβ̂

“ pI ´ HqY

• Ŷ is called the vector of fitted or predicted values

• H “ XpXTXq´1XT is called the hat matrix

• ϵ̂ is the vector of residuals

For the Duncan’s data example on income, education and prestige, with p “ 2 independent
variables and n “ 45 observations,

X “

»

—

—

—

–

1 62 86
1 72 76
...

...
...

1 8 32

fi

ffi

ffi

ffi

fl

and

XTX “

»

–

45 1884 2365
1884 105148 122197
2365 122197 163265

fi

fl

pXTXq
´1

“

»

–

0.10211 -0.00085 -0.00084
-0.00085 0.00008 -0.00005
-0.00084 -0.00005 0.00005

fi

fl

pXTXq
´1XTY “

»

–

-6.0646629
0.5987328
0.5458339

fi

fl “?

SSrEs “ ϵ̂T ϵ̂ “ pY ´ Ŷq
T

pY ´ Ŷq “ 7506.7

MSrEs “
SSrEs

df
“

7506.7

45 ´ 2 ´ 1
“ 178.73

Σ
Ź

“ MSrEspXTXq
´1

“

»

–

18.249481 -0.151845008 -0.150706025
-0.151845 0.014320275 -0.008518551
-0.150706 -0.008518551 0.009653582

fi

fl
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Multiple correlation, JF 5.2.3

The sums of squares in multiple regression are defined in the same manner as in SLR:

TSS “
ÿ

pYi ´ Ȳ q
2

RegSS “
ÿ

pŶi ´ Ȳ q
2

RSS “
ÿ

pYi ´ Ŷiq
2

“
ÿ

ϵ̂2i

Not surprisingly, we have a similar analysis of variance for the regression:

TSS “ RegSS ` RSS

The squared multiple correlation R2, representing the proportion of variation in the response
variable captured by the regression, is defined in terms of the sums of squares:

R2
“

RegSS

TSS
“ 1 ´

RSS

TSS
.

Because there are several slope coefficients, potentially with different signs, the multiple
correlation coefficient is, by convention, the positive square root of R2. The multiple correla-
tion is also interpretable as the simple correlation between the fitted and observed Y values,
i.e., rŶ Y .

Adjusted-R2

Because the multiple correlation can only rise, never decline, when explanatory variables are
added to the regression equation (HW1), investigators sometimes penalize the value of R2

by a “correction” for degrees of freedom. The corrected (or “adjusted”) R2 is defined as:

R2
adj “1 ´

RSS
n´p´1

TSS
n´1

“1 ´

„

p1 ´ R2qpn ´ 1q

n ´ p ´ 1

ȷ

Confidence intervals

Confidence intervals and hypothesis tests for individual coefficients closely follow the pattern
of simple-regression analysis:

1. substitute an estimate of the error variance (MSE) for the unknown σ2 into the variance
term of β̂i

2. find the estimated standard error of a slope coefficient SE
Ź

pβ̂iq

3. t “
β̂i´βi

SE
Ź

pβ̂iq

follows a t-distribution with degrees of freedom as associated with SSE.
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Therefore, we can construct the 100p1´αq% confidence interval for a single slope parameter
by (why?):

β̂i ˘ tpn ´ p ´ 1, α{2qSE
Ź

pβ̂iq

Hand-waving proof:

we know that t “
β̂i´βi

SE
Ź

pβ̂iq

„ tn´p´1, such that

1 ´ α “Pr p´tc ă t ă tcq

“Pr

˜

tc ă
β̂i ´ βi

SE
Ź

pβ̂iq
ă tc

¸

“Pr
´

β̂i ´ tc ¨ SE
Ź

pβ̂iq ă βi ă β̂i ` tc ¨ SE
Ź

pβ̂iq

¯

where tc “ tpn ´ p ´ 1, α{2q is the critical value.
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17 Lecture 17: February 26

Last time

• Multiple linear regression

Today

• HW1 review

• Lab review

• Dummy-Variable regression

• Interactions
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18 Lecture 18: March 10

Last time

• HW1 review

• Lab review

Today

• Dummy-Variable regression

• Interactions

• Unusual and influential data (JF chapter 11)

Hypothesis tests

We first test the null hypothesis that all population regression slopes are 0:

H0 : β1 “ β2 “ ¨ ¨ ¨ “ βp “ 0

The test statistics,

F “
RegSS{p

RSS{pn ´ p ´ 1q

follows an F -distribution with p and n ´ p ´ 1 degrees of freedom.

We can also test a null hypothesis about a subset of the regression slopes, e.g.,

H0 : β1 “ β2 “ ¨ ¨ ¨ “ βq “ 0.

Or more generally, test the null hypothesis

H0 : βq1 “ βq2 “ ¨ ¨ ¨ “ βqk “ 0

where 0 ď q1 ă q2 ă ¨ ¨ ¨ ă qk ď p is a subset of k indices. To get the F-statistic for this case,
we generally perform the following steps:

1. Fit the full (“unconstrained”) model, in other words, model that provides context for
H0. Record SSRfull and the associated dffull

2. Fit the reduced (“constrained”) model, in other words, full model constrained by H0.
Record SSRred and the associated dfred

3. Calculate the F-statistic by

F “
rSSRred ´ SSRfulls{pdfred ´ dffullq

SSRfull{dffull

4. Find p-value (the probability of observing an F-statistic that is at least as high as the
value that we obtained) by consulting an F-distribution with numerator dfpndfq “

dfred ´ dffull and denominator dfpddfq “ dffull. Notation: Fndf,ddf , see Figure 18.1.
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Figure 18.1: An example for p-value for F-statistic value 2.57 with an F3,246 distribution

Dummy-variable regression

For categorical data (factor), we use dummy variable regression:

Yi “ β0 ` β1Xi ` β2Di ` ϵi

where D, called a dummy variable regressor or an indicator variable, is coded 1 for one level
and 0 for all others,

Di “

"

1 for men
0 for women

.

Therefore, for women, the model becomes

Yi “ β0 ` β1Xi ` ϵi

and for men
Yi “ β0 ` β1Xi ` β2 ` ϵi “ pβ0 ` β2q ` β1Xi ` ϵi

For example, Figure 18.2 (a) and (b) represents two small (idealized) populations. In both
cases, the within-gender regressions of income on education are parallel. Parallel regressions
imply additive effects of education and gender on income: Holding education constant, the
“effect” of gender is the vertical distance between the two regression lines, which, for parallel
lines, is everywhere the same.
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Figure 18.2: Idealized data representing the relationship between income and education for
populations of men (filled circles) and women (open circles). In (a), there is no relationship
between education and gender; in (b), women have a higher average level of education than
men. In both (a) and (b), the within-gender (i.e., partial) regressions (solid lines) are parallel.
In each graph, the overall (i.e. marginal) regression of income on education (ignoring gender)
is given by the broken line. JF Figure 7.1.

Multi-level factor

We can model the effects of classification factors with m categories (levels) by using m ´ 1
indicator variables.

For example, the three-category occupational-type factor can be represented in the regression
equation by introducing two dummy regressors:

Category D1 D2

Professional and managerial 1 0
White collar 0 1
Blue collar 0 0

A model for the regression of prestige on income, education, and type of occupation is then

Yi “ β0 ` β1Xi1 ` β2Xi2 ` γ1Di1 ` γ2Di2 ` ϵi

where X1 is income and X2 is education. This model describes three parallel regression
planes, which can differ in their intercepts:

Professional: Yi “ pβ0 ` γ1q ` β1Xi1 ` β2Xi2 ` ϵi
White collar: Yi “ pβ0 ` γ2q ` β1Xi1 ` β2Xi2 ` ϵi
Blue collar: Yi “ β0 ` β1Xi1 ` β2Xi2 ` ϵi

Therefore, the coeficient β0 gives the intercept for blue-collar occupations; γ1 represents the
constant vertical difference between the parallel regression planes for professional and blue-
collar occupations (fixing the values of education and income); and γ2 represents the constant
vertical distance between the regression planes for white-collar and blue-collar occupations
(again, fixing education and income).
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In the above prestige example, we chose “blue collar” as the baseline category. Sometimes,
it is natural to pick a particular category as the baseline category, for example, the “control
group” in an experiment. However, in most applications, the choice of a baseline category
is entirely arbitrary.

Matrix representation

For the above prestige model

Yi “ β0 ` β1Xi1 ` β2Xi2 ` γ1Di1 ` γ2Di2 ` ϵi

we have the design matrix X as

X “

»

—

—

—

–

1 X11 X12 D11 D12

1 X21 X22 D21 D22
...

...
...

...
...

1 Xn1 Xn2 Dn1 Dn2

fi

ffi

ffi

ffi

fl

and the vector of coefficients β is

β “

»

—

—

—

—

–

β0

β1

β2

γ1
γ2

fi

ffi

ffi

ffi

ffi

fl

such that we have (again) the linear model in matrix form:

Y “ Xβ ` ϵ

where ϵi
iid
„ Np0, σ2q, in other words, ϵ „ Np0, σ2Inq.

Interactions

Two explanatory variables are said to interact in determining a response variable when the
partial effect of one depends on the value of the other. Consider the hypothetical data shown
in Figure 18.3.

56



Figure 18.3: Idealized data representing the relationship between income and education for
populations of men (filled circles) and women (open circles). In (a), there is no relationship
between education and gender; in (b), women have a higher average level of education than
men. In both (a) and (b), the within-gender (i.e., partial) regressions (solid lines) are not
parallel. The slope for men is greater than the slope for women, and consequently education
and gender interact in affecting income. In each graph, the overall regression of income on
education (ignoring gender) is given by the broken line. JF Figure 7.7.

It is apparent in both Figure 18.3 (a) and (b) the within-gender regressions of income on
education are not parallel: In both cases, the slope for men is larger than the slope for
women.

Modeling interactions

We accommodate the interaction of education and gender by:

Yi “ β0 ` β1Xi ` β2Di ` β3pXiDiq ` ϵi

where we introduce the interaction regressor XD into the regression equation. For women,
the model becomes

Yi “ β0 ` β1Xi ` β2 ¨ 0 ` β3pXi ¨ 0q ` ϵi

“ β0 ` β1Xi ` ϵi

and for men
Yi “ β0 ` β1Xi ` β2 ¨ 1 ` β3pXi ¨ 1q ` ϵi

“ pβ0 ` β2q ` pβ1 ` β3qXi ` ϵi

The parameters β0 and β1 are, respectively, the intercept and slope for the regression of
income on education among women (the baseline category for gender); β2 gives the difference
in intercepts between the male and female groups; and β3 gives the difference in slopes
between the two groups.

Usual guidance: Models that include an interaction between two predictors should also
include the individual predictors by themselves regardless of the statistical significance of
the associated β’s.
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Test for the interaction

We can simply test the hypothesis H0 : β3 “ 0 and construct the test statistic t “
β̂i´0

SE
Ź

pβ̂iq

„

tn´4 (p “ 3).

Interactions with multi-level factor

We can easily extend the method for modeling interactions by forming product regressors
to multi-level factors, to several factors, and to several quantitative explanatory variables.
Using the occupational prestige example, the occupational type could possibly interact both
with income (X1) and with education (X2):

Yi “ β0 ` β1Xi1 ` β2Xi2 ` γ1Di1 ` γ2Di2

` δ11Xi1Di1 ` δ12Xi1Di2 ` δ21Xi2Di1 ` δ22Xi2Di2 ` ϵi

The model therefore permits different intercepts and slopes for the three types of occupations:

Professional: Yi “ pβ0 ` γ1q` pβ1 ` δ11qXi1` pβ2 ` δ21qXi2` ϵi
White collar: Yi “ pβ0 ` γ2q` pβ1 ` δ12qXi1` pβ2 ` δ22qXi2` ϵi
Blue collar: Yi “ β0` β1Xi1` β2Xi2` ϵi
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19 Lecture 19: March 12

Last time

• Dummy-Variable regression

• Interaction

Today

• Midterm exam starts next Friday

• Unusual and influential data

Unusual and influential data

Linear models make strong assumptions about the structure of data, assumptions that often
do not hold in applications. The method of least squares can be very sensitive to the structure
of the data and may be markedly influenced by one or a few unusual observations.

Outliers

In simple regression analysis, an outlier is an observation whose response-variable value is
conditionally unusual given the value of the explanatory variable: see Figure 19.1.

Figure 19.1: The black point is a regression outlier because it combines a relatively large
value of Y with a relatively small value of X, even though neither its X-value nor its Y -value
is unusual individually. Because of the positive relationship between Y and X, points with
small X-values also tend to have small Y -values, and thus the black point is far from other
points with similar X-values. JF Figure 11.1.

Unusual data are problematic in linear models fit by least squares because they can unduly
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influence the results of the analysis. Their presence may be a signal that the model fails to
capture important characteristics of the data.

Figure 19.2 illustrates some distinctions for the simple-regression model Y “ β0 ` β1X ` ϵ.

Figure 19.2: Leverage and influence in simple regression. In each graph, the solid line
gives the least-squares regression for all the data, while the broken line gives the least-
squares regression with the unusual data point (the black circle) omitted. (a) An outlier
near the mean of X has low leverage and little influence on the regression coefficients.
(b) An outlier far from the mean of X has high leverage and substantial influence on the
regression coefficients. (c) A high-leverage observation in line with the rest of the data does
not influence the regression coefficients. In panel (c), the two regression lines are separated
slightly for visual effect but are, in fact, coincident JF Figure 11.2.

Some qualitative distinctions between outliers and high leverage observations:

• An outlier is a data point whose response Y does not follow the general trend of the
rest of the data.
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• A data point has high leverage if it has “extreme” predictor X values:

– With a single predictor, an extreme X value is simply one that is particularly
high or low.

– With multiple predictors, extreme X values may be particularly high or low for
one or more predictors, or may be “unusual” combinations of predictor values .

And the influence of a data point is the combination of leverage and discrepancy (“outlying-
ness”) though the following heuristic formula:

Influence on coefficients “ Leverage ˆ Discrepancy.

Assessing leverage: hat-values

The hat-value hi is a common measure of leverage in regression. They are named because it
is possible to express the fitted values Ŷj (“Y-hat”) in terms of the observed values Yi:

Ŷj “ h1jY1 ` h2jY2 ` ¨ ¨ ¨ ` hjjYj ` ¨ ¨ ¨ ` hnjYn “

n
ÿ

i“1

hijYi.

The weight hij captures the contribution of observation Yi to the fitted value Ŷj: If hij is
large, then the ith observation can have a considerable impact on the jth fitted value. With
the least square solutions, for the fitted values:

Ŷ “ Xβ “ XpXTXq
´1XTY

we (already) get the hat matrix:

H “ XpXTXq
´1XT

Properties:

• (idempotent) H “ HH

• hi ” hii “
řn

j“1 h
2
ij

• 1
n

ď hi ď 1 (a proof by Mohammad Mohammadi)

• h̄ “ pp ` 1q{n

In the case of SLR, the hat-values are:

hi “
1

n
`

pXi ´ X̄q2
řn

j“1pXj ´ X̄q2
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Detecting outliers: studentized residuals

The variance of the residuals (ϵ̂i “ Yi ´ Ŷi) do not have equal variances (even if the errors ϵi
have equal variances):

Varpϵ̂q “ VarpY ´ Xβ̂q “ VarrpI ´ HqYs “ pI ´ HqVarpYqpI ´ Hq “ σ2
pI ´ Hq

so that for ϵ̂i,
Varpϵ̂iq “ σ2

p1 ´ hiq.

High-leverage observations tend to have small residuals (in other words, these observations
can pull the regression surface toward them).

The standardized residual (sometimes called internally studentized residual)

ϵ̂
1

i ”
ϵ̂i

σ̂
?
1 ´ hi

,

however, does not follow a t-distribution, because the numerator and denominator are not
independent.

Suppose, we refit the model deleting the ith observation, obtaining an estimate σ̂p´iq of σ
that is based on the remaining n´1 observations. Then the studentized residual (sometimes
called externally studentized residual )

ϵ̂˚
i ”

ϵ̂i

σ̂p´iq

?
1 ´ hi

has an independent numerator and denominator and follows a t-distribution with n ´ p ´ 2
degrees of freedom.

The studentized and the standardized residuals have the following relationship (Beckman
and Trussell, 1974):

ϵ̂˚
i “ ϵ̂1

i

d

n ´ p ´ 2

n ´ p ´ 1 ´ ϵ̂12
i

For large n,

ϵ̂˚
i « ϵ̂1

i «
ϵ̂

σ̂

Test for outlier

It is of our interest to pick the studentized residual ϵ̂˚
max with the largest absolute value

among ϵ̂˚
1 , ϵ̂

˚
2 , . . . , ϵ̂

˚
n to test for outlier. However, by doing so, we are effectively picking the

biggest of n test statistics such that it is not legitimate simply to use tn´p´2 to find a p-value.
We need a correction on the p-value because of multiple-comparisons.

Suppose that we have p1 “ Prptn´p´2 ą |ϵ̂˚
max|q, the p-value before correction. Then the

Bonferroni adjusted p-value is p “ np1.
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Measuring influence

Influence on the regression coefficients combines leverage and discrepancy. The most di-
rect measure of influence simply expresses the impact on each coefficient of deleting each
observation in turn:

Dij “ β̂j ´ β̃jp´iq for i “ 1, . . . , n and j “ 0, 1, . . . , p

where β̂j are the least-squares coefficients calculated for all the data, and the β̃jp´iq are the
least-squares coefficients calculated with the ith observation omitted. To assist in interpre-
tation, it is useful to scale the Dij by (deleted) coefficient standard errors:

D˚
ij “

Dij

SE
Ź

p´iqpβ̃jp´iqq

Following Belsley, Kuh, and Welsh (1980), the Dij are often termed DFBETAij, and D˚
ij are

called DFBETASij. One problem associated with using Dij or D˚
ij is their large number:

npp ` 1q of each.

Cook’s distance calculated as

Di “

řn
j“1pỹjp´iq ´ ŷjq

2

pp ` 1qσ̂2
“

ϵ̂
12
i

p ` 1
ˆ

hi

1 ´ hi

In effect, the first term in the formula for Cook’s D is a measure of discrepancy, and the
second is a measure of leverage. We look for values of Di that stand out from the rest.

A similar measure suggested by Belsley et al. (1980)

DFFITSi “ ϵ̂˚
i

hi

1 ´ hi

Except for unusual data configurations, Cook’s Di « DFFITS2
i {pp ` 1q.

Numerical cutoffs (suggested)

Diagnostic statistic Cutoff value

hi 2h̄ “
2pp`1q

n
, (3h̄ for small sample)

D˚
ij |D˚

ij| ą 1 or 2 (2{
?
n for large samples)

Cook’s Di Di ą 4
n´p´1

DFFITS |DFFITSi| ą 2
b

p`1
n´p´1
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